Join
Sidebar
Close
Introductory And Intermediate Algebra Through Applications 3 Chapter 7
Helpful
Unhelpful
March 12, 2025
Related documents
Financial Accounting 11 Chapter 11
Financial Accounting 11 Chapter 3
Financial Accounting 11 Chapter 3
Financial Accounting 11 Chapter 5
Financial Accounting 11 Chapter 1
Financial Accounting 11 Chapter 12
Financial Accounting 11 Chapter 7
Financial Accounting 11 Chapter 10
Financial Accounting Plus Mylab Accounting With Pearson Etext 11 Chapter 11e
Financial Accounting Plus Mylab Accounting With Pearson Etext 11 Chapter 13
of 12
Unlock access to all the studying documents.
View Full Document
Chapter 6
Exercises
an integer that is a factor of each integer.
monomials is the product
of the greatest
common factor of the coefficients and, for
each variable, the variable to the lowest
mono
mials
.
5
GCF
y
yyyyy
y
=
⋅⋅⋅⋅
=
10.
4
33
55
GCF
aa
a
a
a
a
=⋅⋅⋅⋅
=
12.
3
2
93
3
GCF
3
3
m
mmm
mm
m
=
⋅
⋅⋅⋅
=⋅
⋅
=
2
3
2
22222
GCF
2
2
2
8
mn
m
n
n
mn
m
n
=
⋅⋅⋅⋅⋅
⋅⋅
=
⋅⋅⋅
⋅
=
()
()
GCF
5
2
n
=+
18.
()()
()
44
GCF
4
yy
y
y
yy
−=
⋅−
=−
()
(
)
()
()
()
2
65
1
y
=−
()
(
)
()
82
rt
=−
()
()
()
36
bb
=−
()
23
()
34.
()
(
)
32
23
22
22
35
3
5
pq
pq
pq
p
pq
q
+=
+
()
(
)
()
15
3
cd
c
d
=−
()
()
()
()
()
(
)
23
2
()
()
2
33
9
xx
x
=−
−
()
()
22
96
cc
c
=+
+
Chapter 6 Factoring Polynom
ials
108
48.
()
()
()
()
33
2
12
9
15
34
3
5
mm
m
=+
+
()
(
)
(
)
()
53
2
mn
m
n
=−
+
52.
()
(
)
(
)
24
3
3
322
18
24
30
xy
x
y
xy
−+
()
()
()
()
()
()
()
(
)
()
()
()
(
)
()
(
)
11
2
nm
=−
−
()
(
)
()
()
()
()
()
(
)
()
()
()
()
()
(
)
22
3
xy
=−
−
()
()
()
()
()
()
52
ab
=−
−
()
()
()
(
)
265
bcac
=+
−
80.
()
()
1
1
11
Sa
N
d
d
Sa
d
N
dN
Sa
NN
Sa
=+
−
−=
−
−
−
=
−−
−
()
1
n
ar
S
S
+
(
)
()
(
)
()
()
(
)
()
2
74
mm
=−
22
1
12
12
12
1
bb
bb
++
()
(
)
423
cab
a
=+
−
GCF
7
x
=
Section 6.2 Factoring T
rinomials Whose Leading Co
efficient Is 1
109
()
()
()
()
2
Hx
y
xy
xy
xy
+
=
++
b.
Reversing the order of the dig
its so
that
a
is the digit in the thousands
place,
c
is the digit in the tens place
()
()
()
(
)
()
1000
100
10
9
111
10
10
111
ab
c
d
dc
b
a
++
+
=+
−
−
Since 9 is a factor of
each term of
sion is divisible by 9.
(
)
b.
2
16
,
48,
xx
y
−−
Coefficient Is 1
Exercises
written in descending
order.
4.
If each term in a trinomial has a common
()
()
()
()
(
)
Prime polynomial
()
(
)
()
(
)
()
()
Chapter 6 Factoring Polynom
ials
110
()
(
)
()
(
)
71
2
xx
=−
+
−
()
(
)
()
(
)
89
yy
=−
−
()
()
()
()
()
42
5
yy
=−
+
()
()
(
)
21
4
xx
=−−
()
2
52
3
zz
=−
−
()
(
)
17
xx
x
=+
−
()
67
qq
q
=+
−
()
()
()
()
()
32
4
yy
y
=−
−
()
2
53
2
bb
b
=+
+
()
()
()
()
(
)
()
()
2
49
by
y
y
=+
−
()
()
(
)
()
()
()
()
()
Section 6.3 Factoring T
rinomials Whose Leading Co
efficient is Not 1
111
()
()
()
()
()
()
(
)
18
18
xx
⎜⎟
⎝⎠
=−
−
+
⎜⎟
⎝⎠
()
(
)
()
43
1
xx
x
−+
−
()
()
2
x
−
()
2
3
x
x
−
=
−
Whose Leading
Exercises
()
28.
()
(
)
49
2
4
1
2
nn
n
n
−+
=
−
−
()
(
)
52
32
nn
=+
+
()
(
)
31
5
xx
=−
−
()
()
(
)
51
3
bb
=−
−
+
112
()
()
()
()
()
(
)
32
1
7
xx
x
=+
+
()
()
(
)
2
521
3
nn
n
=−
−
()
()
(
)
31
3
xy
y
y
=+
+
()
()
(
)
22
3
4
st
s
t
=−+
()
(
)
(
)
42
3
2
3
ab
a
b
=−
−
()
()
74.
()
2
24
6
18
xy
xy
x
y
−−
+
()
()
()
(
)
45
2
1
xx
=+
−
()
()
(
)
523
31
ab
a
a
=−
−
()
()
(
)
32
4
5
aab
a
b
=−
+
()
92. a.
()
24
rr
r
r
ππ
−=
−
()
2
32
23
1
23
6
nn
n
nn
n
++
++
=
a.
7;
11
c.
2;
4
−−
3.
Answers
may
vary.
Trinomials, the
Difference
or Difference of Cubes
Exercises
square, because the middle term is not twice
the
product
of
a
and 5
b.
perfect
squares.
22.
Neither
()
()
()
()
()
()
()
()
()
()
2
12
1
y
=+
()
()
2
2
()
()
()
()
()
()
114
()
()
()
()
()
()
55
5
mm
m
=+
−
()
()
()
3
31
0
1
0
tt
t
=+−
()
()
()
()
()
()
()
()
()
()
()
()
()
22
()
()
()
(
)
11
aby
y
=−
+
−
()
()
()
()
()
()
()
()
22
2
22
2
22
4
tt
t
tt
t
=−
+
⋅
+
=−
++
()
()
22
aba
a
bb
=−
++
()
()
()
()
22
33
3
33
9
xx
x
xx
x
=+
−
⋅
+
=+
−+
()
()
(
)
()
()
(
)
2
22
2
2
22
2
24
2
xx
x
xx
x
=−
+
⋅+
=−
+
+
()
()
()
2
32
2
4
xx
x
=−
+
+
()
()
()
32
24
1
6
4
nn
n
n
=+
−
+
()
()
()
32
24
2
xx
x
x
=+
−
+
()
()
()
()
()
()
()
()
2
33
9
mm
m
=−
++
()
()
()
45
2
5
2
tt
=+
−
Section 6.5 Solving Quadrat
ic Equations by Factoring
115
()
()
2
16,000
1
2
16,000
1
rr
r
=+
+
=+
()
()
()
21
22
212
2
11
3
4
rr
r
r
r
r
π
=−
+
⋅
+
2. a.
x
2
d.
33
xx
−−
g.
()
large outer square can also be represented by
the sum of the areas of the smaller interior
rectangles and squares. The area of the blue
square
is
2
,
a
the area of each green rectangle
22
2.
aa
b
b
=+
+
Equations
by
Factoring
Exercises
equals to the square of the hypotenuse.
()
23
0
23
t
t
+=
=−
16.
()
25
4
0
yy
−=
20
y
=
or
54
0
y
−=
18.
()
(
)
33
1
0
tt
−−
=
45
5
4
x
x
−=
−
=
45
5
4
x
x
=−
=−
22.
()
12
0
tt
+=
116
()
()
30
0
t
t
=
=
or
12
0
21
1
2
t
t
t
+=
=−
=−
10
1
x
x
−=
=
or
20
2
x
x
+=
=−
2
90
0
()
(
)
23
40
yy
−+
=
23
0
23
3
y
y
−=
=
or
40
4
y
y
+=
=−
()
(
)
21
0
21
t
t
−=
=
or
23
0
23
t
t
−=
=
36.
2
02
5
1
0
1
yy
=+
+
5
()
()
70
t
+=
or
70
t
−=
41
0
x
+=
()
()
()
2
92
1
0
91
1
0
tt
tt
++
=
++
=
10
1
t
t
+=
=−
()
()
(
)
23
1
5
0
nn
−−
=
31
0
31
n
n
−=
=
or
50
5
n
n
−=
=
46.
()
()
31
0
rr
+=
20
2
r
r
−=
=
or
50
5
r
r
+=
=−
3
y
=−
4
y
=
50.
()
()
2
31
8
tt
−=
30
t
+=
or
60
t
−=
52.
()
(
)
31
7
1
0
kk
+=
−
32
0
3
k
k
+=
=−
or
50
k
+=
117
54.
()
()
(
)
12
33
9
34
1
3
0
xx
xx
+=
−+
=
41
0
x
−=
or
30
x
+=
56.
()
2
36
mm
=
30
0
m
m
=
=
or
20
2
m
m
−=
=
()
()
2
91
6
0
34
340
y
yy
−=
+−
=
34
0
34
y
y
+=
=−
or
34
0
34
y
y
−=
=
60.
()
()
()
2
12
48
22
0
x
xx
=
+−
=
()
()
64.
()
31
0
rr
+=
2
r
=
5
r
=−
(
)
()
()
(
)
2
27
1
2
0
23
4
0
nn
nn
++
=
++
=
()
(
)
()
(
)
2
561
0
14
0
mm
mm
−−
=
−
−−
=
10
1
m
m
−=
=
or
40
4
m
m
−=
=
()
(
)
()
()
2
2
31
0
1
8
32
8
0
47
0
tt
tt
tt
−−
=
−−
=
+−
=
()
(
)
()
(
)
2
32
5
1
6
31
5
0
xx
x
xx
+−
=
+−
=
31
0
x
+=
or
50
x
−=
()
()
(
)
83
6
02
1
4
nn
n
nn
+=
−
=+−
()
()
03
1
13
u
u
=+
−=
118
78.
()
()
32
8
47
0
nn
nn
+=
−+
=
80.
()
92
7
bb
=
2
44
5
0
xx
−−=
73
0
m
−=
or
73
0
m
+=
2
650
nn
−=
90.
222
2
12
13
25
0
x
x
+=
−=
92.
()
()
(
)
16
8
24
0
82
3
1
0
tt
tt
−+
+
=
−−+
=
2
or 1.5 sec.
()
(
)
1
.
a.
Possible answer:
2
56
0
xx
−+
=
()
()
(
)
20
2
x
x
+=
=−
or
50
5
x
x
−=
=
()
(
)
3.
The
zero-product property is true for more